Dresden: Forscher präsentieren 3D-gedruckten Raketenantrieb
Microlauncher sind eine Alternative zu herkömmlichen Trägerraketen. Die mittelgroßen Transportsysteme können Nutzlasten bis 350 Kilogramm befördern, künftig sollen sie kleine Satelliten in den Weltraum bringen. Raumfahrtexperten der Technischen Universität Dresden haben gemeinsam mit Forscherinnen und Forschern am Dresdner Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS ein additiv gefertigtes Raketentriebwerk mit Aerospike-Düse für Microlauncher entwickelt. Der skalierte Prototyp aus Metall soll 30 Prozent weniger Treibstoff als konventionelle Triebwerke verbrauchen.
Der Markt mit kleinen Satelliten wird in den kommenden Jahren boomen. Großbritannien plant im Norden Schottlands den ersten Weltraumbahnhof auf europäischem Boden und auch der Bundesverband der Deutschen Industrie BDI hält einen Weltraumbahnhof hierzulande für sinnvoll. Von dort sollen kleine bis mittelgroße Trägerraketen Forschungsinstrumente und kleine Satelliten ins All bringen. Diese Microlauncher sind für eine Nutzlast von bis zu 350 Kilogramm ausgelegt. Eine effiziente Art, diese Microlauncher anzutreiben, sind sogenannte Aerospike-Triebwerke. Diese stellen nicht nur eine erhebliche Massereduktion, sondern auch eine signifikante Treibstoffersparnis in Aussicht. Im Laufe der letzten beiden Jahre hat ein Forscherteam des Instituts für Luft- und Raumfahrttechnik der TU Dresden zusammen mit dem Fraunhofer IWS ein solches Aerospike-Triebwerk entwickelt, gefertigt und getestet. Das Vorhaben wird vom Bundesministerium für Bildung und Forschung BMBF gefördert. Die Besonderheit: Treibstoffinjektor, Brennkammer und Düse werden per Laser Powder Bed Fusion (L-PBF), einem additiven Fertigungsverfahren, Schicht für Schicht hergestellt. Die Düse selbst besteht aus einem stachelförmigen Zentralkörper, über den die Verbrennungsgase beschleunigt werden.
»Die technologische Konzeption der Aerospike-Triebwerke ist erstmals in den 1960er Jahren aufgekommen. Aber nur durch die Freiheiten der Additiven Fertigung und die Einbettung dieser in konventionelle Prozessketten ist es uns möglich, so effiziente Triebwerke überhaupt herzustellen«, sagt Michael Müller, wissenschaftlicher Mitarbeiter am Additive Manufacturing Center Dresden (AMCD), das gemeinsam von der TU Dresden und dem Fraunhofer IWS betrieben wird. Aerospike Rocket Engines versprechen eine Treibstoffeinsparung von etwa 30 Prozent gegenüber konventionellen Raketen.
Darüber hinaus sind sie kompakter als konventionelle Systeme, wodurch die Masse des Gesamtsystems sinkt. »In der Raumfahrt ist jedes eingesparte Gramm Gold wert, da man weniger Treibstoff in den Orbit mitnehmen muss. Je schwerer das Gesamtsystem, desto weniger Nutzlast kann transportiert werden«, erläutert Mirco Riede, Gruppenleiter 3D-Generieren am Fraunhofer IWS und Kollege von Michael Müller. Die Dresdner Aerospike-Düse der TU Dresden und des Fraunhofer IWS passt sich auf dem Weg von der Erde in den Orbit besser an die Druckverhältnisse an. Dadurch ist sie effizienter und benötigt weniger Treibstoff als herkömmliche Triebwerke.