Leichtbau leicht gemacht - Gewebte Metallzellen
Die junge Ingenieurin Dr.-Ing. Cornelia Sennewald an der Technischen Universität Dresden wurde gestern in Heidelberg mit dem Bertha Benz-Preis 2017 für ein neuartiges Verfahren zur Herstellung metallischer 3D-Strukturen auf Webmaschinen ausgezeichnet. Die noch junge Werkstoffklasse der sogenannten zellularen metallischen Materialien besitzt außerordentliches Potenzial – wobei bislang das Problem bestand, diese Zellen kostengünstig und in industriellem Maßstab zu produzieren. Sennewald gelang es im Rahmen ihrer Doktorarbeit an der TU Dresden, ein neuartiges Verfahren zu entwickeln und diese komplexen 3D-Strukturen auf handelsüblichen Webmaschinen herzustellen.
Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“
„Dank des neuen Verfahrens konnte ich Metallfäden und -drähte statt in den üblichen 2D-Strukturen auch zu 3D-Strukturen verbinden, und zwar in ganz unterschiedlichen Größen und Formen“, erläutert Sennewald. „Außerdem gelang es mir – das war ein zweiter großer Schritt nach vorn –, andere Leichtbaustoffe wie Carbon-Fasern mit zu verweben, was ganz neue Einsatzmöglichkeiten eröffnet.“ Die hybride Verbindung von Metallen und Kunststoffen bietet ein weiteres breites Spektrum ableitbarer Anwendungen. „Wir denken an Crash-Elemente, die eine extrem hohe Steifigkeit besitzen und zudem hohe Temperaturen aushalten. Wir könnten auf diese Weise beispielsweise die Betonstrukturen von Gebäuden verstärken, um sie widerstandsfähiger gegen Erdbeben zu machen. Oder sie besser gegen Explosionen schützen. Bei bestehenden Gebäuden könnte hier ein entsprechender Materialauftrag infrage kommen, bei Neubauten könnten die von uns entwickelten zellularen Webstrukturen gleich mit in den Bau einbezogen werden.“
Vor allem auf die Anwendbarkeit des neuen Verfahrens in der Praxis legte Sennewald ihr Augenmerk. Es nütze den Unternehmen wenig, wenn sich eine neuartige Technologie nur unter Laborbedingungen bewähre. „Deshalb habe ich diese 3D-Zellen mit meinem Team ganz bewusst auf handelsüblichen und nur leicht modifizierten Webmaschinen produziert. So konnten wir zeigen, dass auch diese ungewöhnlichen Strukturen sowie die Verbindung aus metallischen und nicht metallischen Werkstoffen ohne großen Kostenaufwand oder nur durch die Anschaffung teurer Spezialmaschinen möglich sind.“
Für ihre Dissertation „Generative Struktur-, Technologie- und Webmaschinenentwicklung für unikale zellulare 3D-Strukturen in Leichtbauweisen“ wird Dr.-Ing. Cornelia Sennewald der Bertha Benz-Preis 2017 zuerkannt. Die preiswürdige Arbeit wurde an der Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), der Technischen Universität Dresden erarbeitet. Der Bertha Benz-Preis ist bereits die zweite Auszeichnung für Dr.-Ing. Cornelia Sennewald, nachdem sie für ihre Dissertation bereits mit einem der fünf Förder- und Kreativitätspreise 2017 des VDMA-Fachverbandes Textilmaschinen geehrt wurde.